
Biomass potential from Canadian forests in the context of climate change

IEA Bioenergy T43 and Université Laval Workshop: Wildfire Resilience and Biomass Supply

October 5, 2023

Sylvain Volpé, ing.f., M.Sc.

Copie et redistribution interdites. Copying and redistribution prohibited.

FPINNOVATIONS Fibre Supply

Forestry team manager with over 15 years of experience in biomass supply chain modelling and quality improvement practices. Participated in multiple business de-risking projects for largescale biomass investments.

sylvain.volpe@fpinnovations.ca

ABOUT FPINNOVATIONS

Our Company at a Glance

Not-for-profit R&D world leader that specializes in creating scientific solutions to support

the Canadian forest sector's competitiveness in the global marketplace.

Our Sectors and Industry Challenges

Innovation Centers of Excellence (ICE)

- Forest Operations
- Pulp and Paper
- Wood Products
- Bio-Sourced Products

Fibre costs	Fibre	Workforce
and value	supply	

Sustainability, Safety and Carbon impact

The climate is changing and FPI is here to support the Canadian forest sector develop Resilient Fibre Supply strategies

Canadian forests

Prevention strategies, what to expect from salvage operations and how can the sector recover

the most value from forest to ensure a sustainable environment

FIRESMART

Community fireproofing experience

SALVAGE OPS

Expectations for logging productivity impacts and maintenance costs increases

BIOMASS AVAILABILITY

Biomass availability from FireSmart + burnt forests

GOING FORWARD

What to expect from FPI research in the coming years to build resilient supply chains

O Forest Management and Wildfire Risk Reduction

Canada has experienced devastating losses resulting from wildfires
 How can we protect communities, watersheds, infrastructure and timber?
 How can we reduce the threat of catastrophic loss?

FPI Wildfire team - Data collection on experimental fires on fuel management

- Pre- and post-treatment fuel inventory
 - Stand characterization
 - ✓ Surface fuel loading
- Fire behaviour characteristics
 - ✓ Rate of spread
 - ✓ Fire intensity
- Fire effects
 - ✓ Fuel consumption
 - Stand mortality

From FireSmart Canada website - https://firesmartcanada.ca/

O Forest Management and Wildfire Risk Reduction

info@fpinnovations.ca www.fpinnovations.ca

Landscape level fuel break – Selective harvest

- Reduced wildfire intensity at the landscape level
- Improved wildfire detection
 - Quicker detection in less dense forest stands
- More efficient and safer suppression operations
 - ✓ Reduced fire intensity in treatment area permits suppression under higher hazard
 - Less dense forest stands allows for better situational awareness and easier movement through forest
 - ✓ Airtanker effectiveness better retardant penetration through reduced canopy
- Maintained visual aesthetics
- Preserved ecological benefits

Debris Loading and Fire Behaviour Potential: A Comparative Analysis of Two Harvesting Methods in the Nazko Region of Central British Columbia

Technical report no. 55 - September 2017 Steven Hvenegaard, Researcher, Wildfire Operations

Wildfire risk reduction research

Exploring innovative debris management techniques to increase secondary fibre utilization + better understanding of fire behaviour

EVALUATING A SELECTIVE HARVEST OPERATION AS A FOREST FUEL TREATMENT:

A CASE STUDY IN A MATURE DOUGLAS-FIR FOREST IN CENTRAL INTERIOR BRITISH COLUMBIA

study located in Southern British Columbia near the city of Nelson

Steven Hvenegaard, Researcher, Wildfire Operations Brandon MacKinnon, Researcher, Wildfire Operations

September 2020 This report is n

O Forest Management and Wildfire Risk Reduction

Selective harvest - Wildfire risk reduction research

- Gross cruised volume in 29 ha plot (330 m³/ha)
- Total harvest volume 144 m³/ha (43% removal)

Species	Merchantable volume, m	Planned removal, %
Douglas-fir	3,198	40
western red cedar < 47.5 cm DBH	2,481	90
western red cedar > 47.5 cm DBH	309	75
western hemlock	933	90
grand fir/ subalpine fir	221	90
western larch	1,085	40
deciduous, western white pine, lodgepole pine	234	25

Outcomes

 The post-harvest stand inventory indicated a favorable retention of species that were more drought- and fire-resistant + a reduction in diseased or dead stems

Economics of various FireSmart treatments

Pile & Burn

Treatment	Costs	s (\$/ha)	Reference
reathent	Min	Max	Kelefence
Piling	400	800	Baxter 2010
Piling and burning	475	875	Baxter 2010
Burning roadside debris piles		150	Baxter 2010
Manual piling and burning	1350	2100	Harris 2014
Manual slash, pile, and burn		5000	Gray 2011b

Thinning & spacing

	Treatment	Costs (\$/ha)		Reference
	reatment	Min	Max	Reference
	Thinning and spacing with log recovery		4500	Gray 2011b
2	Thinning and spacing with log recovery		3000	Bulley 1999
	Thinning and spacing with log recovery	1900	2200	Phillips 2004
	Brush cutting (small mulcher)	665	950	Harris 2014
	Brush cutting (large mulcher)	1365	1560	Harris 2014
	Thinning (excavator)	1500	1800	Harris 2014
	Thinning (feller buncher)	1700	2450	Harris 2014
	Brush cutting - single and double pass	600	1000	FPInnovations 2014
	Inter-tree spacing (mixed vs spruce stands)	1100	1300	FPInnovations 2014

> Slash distribution

Treatment	Costs	Reference		
reatment	Min	Мах	Reference	
Debris (slash) spreading	250	450	Baxter 2010 Harris 2014	

> Slash recovery

Treatment*	Costs (\$/ha)**	Reference	
ricathent	Min Max		Kelefenee	
Integrated slash recovery	125	150	Volpé and Desrochers 2011	
Non-integrated slash recovery	340	380	Volpé and Desrochers 2011	

https://wildfire.fpinnovations.ca

Open access to research documents

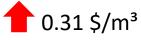
Home About Featured Research Research Library Projects Our Team Partners Contact

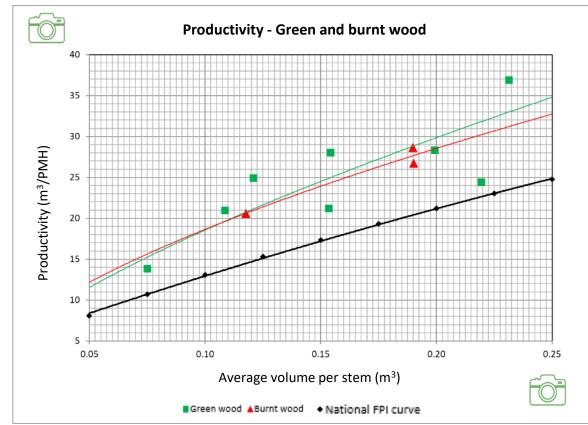
SALVAGE OPS

What to expect - PRODUCTIVITY

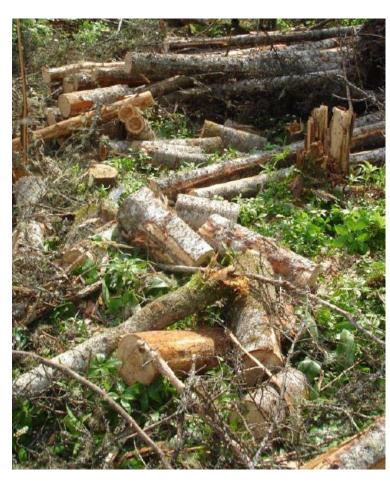
"Estimated" impacts on productivity (%) and costs (\$/m³) observed

A comparative study was carried out to determine the impact of fire severity on the productivity of a cut-to-length harvesting operation


@ 0.100 m³/tige
=> No difference


@ 0.150 m³/tige ↓ 2.4 %

Travel distances were greater in burnt wood, but felling and processing stems were quicker



What to expect – FIBRE UTILIZATION

Lower merchantable wood recovery

- Burnt wood requires <u>50% more</u> cuts off the butt to achieve desired quality, and therefore fewer logs are manufactured from burnt stems
- The average volume per log is greater in burnt wood, but the number of logs per stem is lower
- Biomass recovery opportunities...

What to expect - MAINTENANCE

> Lubricants & Hydraulics

- Affected: Bushings, Bearings and Pins
- To do: Lubrication, Cleaning, Maintenance

Filters

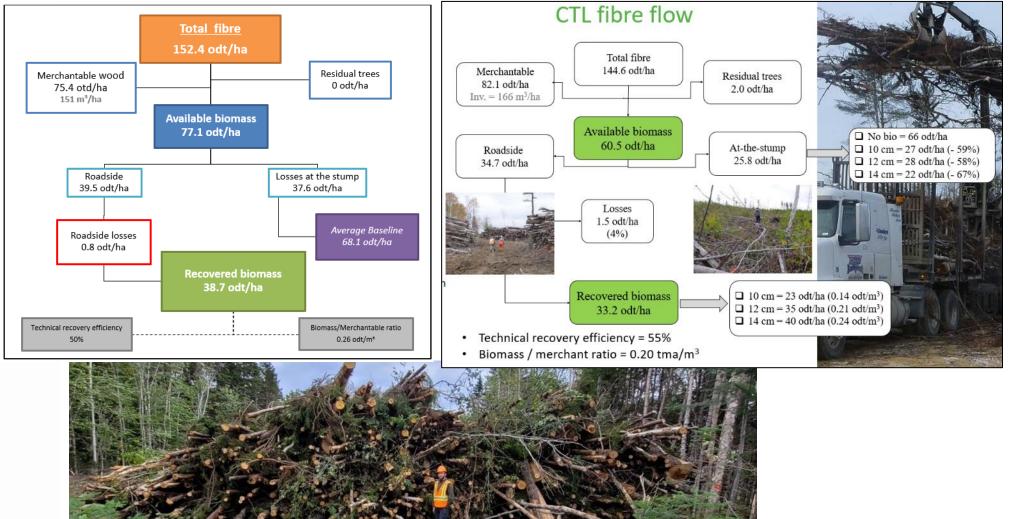
Expect significant increase in replacement

Electronics

- Airborne carbon particles from harvesting burned wood, is conductive
- Sticks to rubber and plastic connectors and wires
- Can disrupt sensitive electronics

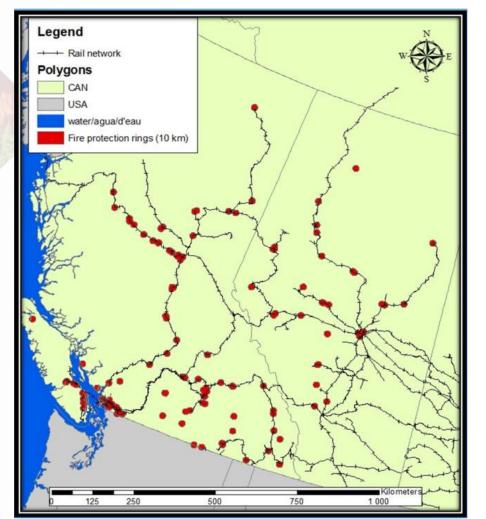
O What to expect – Health & Safety

- Carbon Dust
- Possible cabin heat in summer
 - Awareness
 - Cleanliness
 - Maintenance



BIOMASS AVAILABILITY

• Forest biomass potential


> Typical biomass flows

O Potential for biomass recovery from FireSmart treatments

for British Columbia and Alberta

Fire protection rings (10 km) around forest communities

BC opportunity = 2.5 M odt/yr AB opportunity = 850k odt/yr

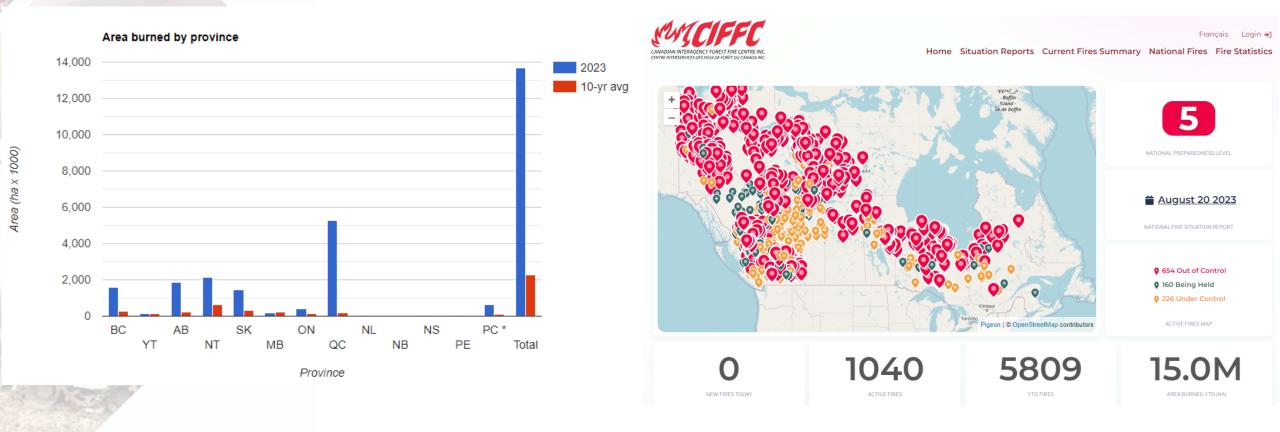
Potential of FireSmart treatments for fuelling the bioeconomy Internal Report IR-06-27

June 2014

By: Sylvain Volpé, Researcher, Forest Feedstocks

O Potential biomass from regular logging operations

> 17M odt/yr in logging residues alone (from 750k ha harvest)


Province	Harvest			Recoverable logging residues	
	(m3/yr)	(m3/tree)	odt/m3	odt/yr]
BC Coastal	13 000 000	1,000	0,05	650 000	1
BC Interior	38 000 000	0,400	0,11	4 180 000	7
Alberta	25 000 000	0,300	0,12	3 000 000	5
Saskatchewan	4 000 000	0,200	0,15	600 000	1
Manitoba	1 000 000	0,200	0,15	150 000	0
Ontario	14 000 000	0,200	0,15	2 100 000	4
Quebec	29 000 000	0,200	0,15	4 350 000	7
Atlantic	14 000 000	0,200	0,15	2 100 000	4
Total	138 000 000	0,349		17 130 000	29

Canada has a potential to host 29 BioHubs to meet the needs of large emitters looking to decarbonize their operations (Oil & Gas, Steel, Mining) by 2030!

O Potential for biomass recovery from <u>FireSmart treatments</u>

- Record breaking season in 2023
- Wildfire season began early and continuing late
- 7.5 x the 15-year average for hectares burnt

O Potential for biomass recovery from <u>FireSmart treatments</u>

Long term forecast

- Larger more unwieldy fires, climate trending towards warmer
- Greater frequency of fires, wider geographic area of impact
- Number of wildfires in Canada projected to double by 2050 Gov of Canada

Potential at national stage...

- Economical volumes to assess...
- How many ha/yr of FireSmart...

GOING FORWARD

< 20

24

FPI Research Information Sharing and Feedback (RISF) S Webinar, Aug 24 (200 participants)

- Needs from Industry and Government
 - Wildfire research with most benefit
 - ✓ Protection of forests
 - Fuel treatments to reduce hazards
 - Harvesting productivity in fire damaged stands
 - Leverage harvester/processor head data to better understand impact on productivity
 - Processing fire damaged logs (maximize value at sawmill)
 - Optimal debarker setup
 - Moisture sorting for dry wood
 - Challenges of using burnt wood for pulping
 - Loss in fibre length and strength

Burnt wood recovery

Deroject ideas

- Use of standardized data and burn pattern classification
 - Harvesting history of green stands
 - Standardized, georeferenced data
 - Productivity studies with long-term follow-ups

	Burn severity classification				
5	Low Severity				
	Moderate Low Severity				
	Moderate High Severity				
	High Severity				

Resilient Fibre Supply

Canada Gov Priorities

- Increase wildfire resilience efforts
- Promote sustainable biomass utilization

Objectives of IEA Bioenergy T43

Wildfire Resilience and Biomass Supply

- Explore policies and projects aimed at increasing community resilience to wildfires while utilizing biomass for energy or other bioproducts, thereby reducing greenhouse gas emissions
- Provide insights and knowledge from best practices and case studies that can inform policy development
 - ✓ Call for proposals : Wildfire Resilient Futures Initiative in late fall/early winter
- Examine the financial viability of utilizing recovered fibre to generate bioenergy/bioproducts, offsetting costs associated with wildfire mitigation and restoration

QUESTIONS?

Contact sylvain.volpe@fpinnovations.ca Merci / Thank you

web.fpinnovations.ca