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Biogenic CO, emissions in LCA

In LCA the same importance is given to emissions in the past,
present and future (discount rate r = 0)

“CO, emissions resulting from bioenergy consumption should
not be included in a country’s official emission inventory”’ A

(OECD, 1991) A B
 J
CO, balance=+1C0O,-1C0O,=0-> GWP=0
If bioenergy is carbon neutral it is also climate neutral gé
Only CO, from permanent C losses is considered 3 é
o ®
< o
The appropriateness of this paradigm is questionable,
especially when the analysis is constrained /F
by a fixed timeframe >
<«—Rotation period, ———p
Time matters: all CO, is equal in the -
atmosphere and contributes to global e, years
warming An increasing number of scientists proposes to
The challenge is to estimate this assign to tailpipe CO, emissions from biomass
contribution in LCA studies the same climate impact of CO, from fossils
GWPyipco2 =1
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Integrated approach for GWP
of biogenic CO,

Biogenic CO, emissions cause a perturbation in atmospheric CO, concentration, but their GWP <1
We account for the time profile of biogenic CO, fluxes in LCA
The biomass system is not isolated but it is integrated with the global C cycle

e

The perturbation is modeled with an Impulse Response Function (IRF) to simulate interactions among
the atmosphere, the oceans and the terrestrial biosphere

1. Identification of the 2. Elaboration of the functions to model biogenic CO; fluxes
bioenergy system and its
biogenic CO, flows r P | 21 Dynamic of CO; sequestration 2.2 Dynamic of CO; emissions from
(stand/landscape level) from growing vegetation combustion or oxidation of HWP
3. Computing the net change in 4. Calculation of the climate impact 5. Combination with other climate
atmospheric CO, concentration with an appropriate metric: aspects or accounting rules
o - Radiative forcing - - Changes in albedo
f(t)= j [C 5(t')- ng[tﬂ- y(t—t')at’ -GWP - Life-cycle auxiliary inputs
R -GTP - Theoretical substitution of fossil CO,
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Rotation| GWP,;,, GWP,,, GWP,,,

(years) | TH=20 TH=100 TH =500
1 0.02 0.00 0.00
10 0.22 0.04 0.01
20 0.47 0.08 0.02
30 0.68 0.12 0.02
40 0.80 0.16 0.03
50 0.87 0.21 0.04
60 0.90 0.25 0.05
70 0.93 0.30 0.05
80 0.94 0.34 0.06
90 0.95 0.39 0.07
100 0.96 0.43 0.08
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GWP of time-distributed emissions
(HWP and LUC)

1. Example: wood from forest plantation (r = 100 years)
used as particle board (mean lifetime T = 15 years)

2.1 CO, sequestration from forest re- 1 —— 5.IRF
growth (Gaussian distribution) 0.9 1 IRF
: ——¢-IRF
2.2 Comparison of different 0.8 1% - IRF
probability distributions to model CO, o7l <+« Anthropogenic CO2
emission rate: g
E 06
1) Delta function &() (all C . GWP,,
oxidized at t = 15) £ 20 100 500
g- 041 0.26 0.32 0.07
E 031 0.32 0.32 0.07 |.....
S . 0.33 0.26 0.06
' 0.19 0.28 0.07
3) Exponential distribution &) (1% 0.1 -

order decay, IPCC) 0

120 140 160 180 200

4) * distribution y(?) (emissions are| 01
distributed around the mean
lifetime)

Time, years
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Landscape level (1)

e Pulse emission each year
— Fossil fuels

— Forest biomass with r = 100 years (100 forest parcels, at steady
state before harvest, then managed re-growth thereafter)
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Landscape level (2)

* Pulse emissions stopped at year 250
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Landscape level (3)

e Pulse emission each year
— Fossil fuels

— Forest biomass (at steady state before harvest, which occurs-each
year in a new forest parcel, then natural re-growth thereafter)
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RF ratio = 0.02 (TH =500)
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» Pulse emission each year

Landscape level (4)

— Fossil fuels

— Forest biomass (r = 100 years), full dynamics of each forest parcel

under rotation (uneven age forest)

=T ossil fuels
==Bioenergy
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Conclusions

* The existing CO, accounting frameworks in LCA are shaky and
potentially inappropriate

e It is time to distinguish between “carbon neutral” and “climate neutral”

* The adoption of a GWP =1 (like anthropogenic CO,) overestimates
the climate impact

*  We propose a methodology based on physical aspects (net change in
CO, atmospheric concentration)

« Climate impact of biogenic CO,: GWP,, <1
« Large mitigation of GW with long time frames
« Issue of scale: applicability both at single stand and landscape level

« Results are suitable for being routinely applied in LCA studies and
incorporated in methodological standards (e.g. accounting of emissions
from HWP, emission inventories, etc.)

* N.B. General conclusions can be derived after a comprehensive
climate assessment only, which includes life-cycle auxiliary inputs, U
changes in terrestrial C pools, albedo, evapotranspiration, etc. reativity
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