BEST MANAGEMENT PRACTICES: A TOOL FOR RESPONSIBLE WATER MANAGEMENT

Daniel G. Neary

Science Team Leader Southwest Watershed Team Rocky Mountain Research Station USDA Forest Service

OBJECTIVES

- Discuss the BMP concept
- Focus on forest bioenergy
- Approach from a Life Cycle Analysis viewpoint
- Examine a case study from Tasmania

BEST MANAGEMENT PRACTICES

BMP DEFINITIONS

- Best Management Practices (BMPs) are effective, practical, structural or nonstructural methods which prevent or reduce the movement of sediment, nutrients, pesticides and other pollutants from the land to surface or ground water.
- BMPs protect water quality from potential adverse effects of silvicultural or agricultural activities.
- BMPs are developed to achieve a balance between water quality protection and the production of woody and herbaceous crops within natural and economic limitations.

BMP HISTORY

 Originally referred to auxiliary pollution controls in industrial wastewater, city sewage, and stormwater management.

- Mentioned in USA 1977 Clean Water Act
- In 2000 the USEPA released a list of national BMPs for stormwater
- Codified in Codes of Forest Practices

BMP GOAL: PROTECT SOIL & WATER RESOURCES

SOILS AND SUSTAINABILITY PRODUCTIVITY

EROSION

FORMATION

WATER POLLLUTION

BMP DEVELOPMENT

MULTIPLE COMPONENTS

CORE CONCEPT: THE USE OF SMZs

- Water Quality, Biodiversity and Codes of Practice in Relation to Harvesting Forest Plantations in Streamside Management Zones
- •
- Daniel G. Neary¹, Philip J. Smethurst², Brenda Baillie³, and Kevin C. Petrone⁴
- •
- July 2011
- •
- CSIROREPORT

TASMANIA SMZ

AGRICULTURE SMZs

CSIRO

AGROFORESTRY SMZ DESIGN

QUEENSLAND FOREST SMZs

Stream protection system

QUEENSLAND DNRW 2007

SMZ ECOSYSTEMS SERVICES

- •Water Quality Protection
- Streamflow Enhancement
- Geomorphic Stability
- •Flora & Fauna Benefits
- •Air Quality Improvements
- Social & Economic Benefits

SMZ FUNCTION

CSIRO

BMP PLANNING

- SMZ SIZES VARIABLE
- W = 8 9 m + 0.6 m (s) *Trimble and Sartz (1957)*
- W = 13 m + 0.42 m (s) *Swift (1986)*
- W = 9 m + 0.46 m (s) USDA Forest Service 1989
- W = k(s^{1/2}) *Nieswand et al. (1990)*
 - Where: W = width of SMZ (buffer) in meters
 - k = constant size (e.g. 5, 7, 10, 15 etc. m)
 - s = percent slope expressed as a whole number (e.g. 5, 10, 15 etc.)

PLANNING ROAD & LANDING LOCATIONS

CSIRO

ROAD CONSTRUCTION

HARVESTING GUIDES

BIOENERGY LIFE CYCLE BMPs

- Crop establishment
- Intermediate Treatments
- Harvesting
- Transportation
- Processing & Generation
- Energy Dispersal
- Waste Handling
- Crop Establishment
- etc

FRAME OF REFERENCE

Sustainable Forestry in Australian Agroforestry Landscapes for Water Quality and a Source of Biomass for Bioenergy

DAN NEARY PHILIP SMETHURST

TASMANIA WATER QUALITY RESULTS

Naraglen Farm

NORTHWEST TASMANIA SOUTH OF BURNIE

Aux 1

Pet River Water Supply Dam

PELOGIC

NARAGLEN FARM

- CUT

- CONTROL

PET RIVER

NARAGLEN FARM SAMPLING SITES

NARAGLEN BMPs

- USE OF EXISTING ROADS
- WIDE-TRACKED FELLER BUNCHERS
- NO MACHINERY WITHIN 10 m OF WATERWAYS
- SLASH LEFT IN PLACE
- HARVEST DURING DRY WEATHER
- PRE-PLANNED LANDINGS
- SERIES OF FARM STOCK PONDS
- SMZ FENCING

NARAGLEN FARM COVER – AFTER HARVEST

NARAGLEN FARM COVER – AFTER HARVEST

<2% BARE SOIL

NARAGLEN FARM COVER – AFTER HARVEST

NARAGLEN FARM TRIBUTARY – GRAB SAMPLES

NARAGLEN FARM TRIBUTARY- BURNIE TAS

Naraglen Farm and Pet River Water Quality

SEDIMENT DEPOSITS

DAM 10

SMZ HARVESTING

NARAGLEN DAM 13 TURBIDITY

NARAGLEN DAM 13 TURBIDITY

CSIRO

POST-CUT TURBIDITY & RAINFALL

Naraglen Dam 10 - Rainfall & Turbidity

ABOVE THE CUT AREA

CSIRO

CSIRO.

SUMMARY & CONCLUSIONS

BMP GOAL: PROTECT SOIL & WATER RESOURCES

BIOENERGY PASSION

HELSINKI AIRPORT 28 AUGUST 2007

ANY QUESTIONS?

