Incorporating Bioenergy into Sustainable Landscape Designs

Virginia H. Dale (<u>dalevh@ornl.gov</u>) Keith L. Kline (<u>klinekl@ornl.gov</u>) Esther Parish (<u>parishes@ornl.gov</u>)

Center for BioEnergy Sustainability Oak Ridge National Laboratory Oak Ridge, Tennessee

http://www.ornl.gov/sci/ees/cbes/

March 15, 2016

Workshop on "Landscape management and design for food, bioenergy and the bioeconomy: methodology and governance aspects Gothenburg, Sweden

Sustainability brings together disparate perspectives

 Managed by UT-Ramitle Sie the U.S. Department of Energy

Overall Approach

Identify Indicators

3 Managed by UT-Battelle for the U.S. Department of Er

Categories of indicators of progress toward sustainability

Environmental

McBride et al. (2011) *Ecological Indicators* 11:1277-1289. Dale et al. (2013) *Ecological Indicators* 26:87-102.

Socioeconomic

Metrics & interpretations are <u>context</u> **specific**

Efroymson et al. (2013) Environmental Management 51:291-306.

(Example shown is biofuel, but concepts are applicable to bioenergy as well)

Dale et al. (2013) Environmental Management 51: 279-290.

Biofuel Supply Chain in View of Indicators

Integrating Bioenergy via Landscape Design Improves Resource Management

Dale et al. (2016). Renewable & Sustainable Energy Reviews 56:1158-1171.

8 Managed by UT-Battelle for the U.S. Department of Energy

Dale et al. (2016)

Assessed Multiple Effects of Bioenergy Choices

An optimization model identified "ideal" sustainability conditions for using switchgrass for bioenergy in east Tennessee

Spatial optimization model

- Identifies where to locate plantings of bioenergy crops given feedstock needs for Vonore refinery
- Considering
 - Farm profit
 - Water quality constraints

Parish et al. (2012) *Biofuels, Bioprod. Bioref.* 6:58–72. Parish et al. (2016) Ecosphere 7(2):e01206. 10.1002/ecs2.1206.

Lacking markets, woody debris after timber harvests is left to decay; often burns; and can contribute to risk, frequency and intensity of wildfires

Key Research Questions

- How does SE US pellet production for export to EU (now through 2030) differ from business-as-usual case of no pellet production?
 - Under what conditions does the pellet industry complement or compete with pulpwood use?
 - Will pellet industry alter amount of land staying in forests?
- Are there significant changes to key indicators?
 - Biodiversity
 - Land-use changes
 - Greenhouse gas emissions
- Does pellet industry provide costs or benefits?
 - > Jobs
 - Water quality improvement
 - Preserving land as forest
 - > Other benefits?

Factors to consider: woody biomass for pellets is at end of value chain

ORNL analysis uses Forest Inventory Analysis (FIA) data collected by USDA

Long-term survey of the forests in the US provides information on status and trends in

- Forest area and location
- Species, size, and health of trees
- Total tree growth, mortality, and removals by harvest
- Wood production and utilization rates by various products
- Forest land ownership

http://www.fia.fs.fed.us/tools-data/

Prior analysis by USDA shows that most US timberland is in SE, under private, non-corporate ownership

National Woodland Owner Survey

Public and Private Forest Ownership in the United States

14 Managed by UT-Battelle for the U.S. Department of Energy Source: FIA RPA 2012; Timberland: forestland capable of >20cft/acre-year of industrial wood

Effects on forests of wood-based pellet production in fuelsheds of the SE US

Increased wood pellet production from two major fuelsheds in the SE US did <u>not</u> affect

- Carbon in
 - Litter and soil
 - Other nonharvestable material
 - Harvestable material
- Above-ground biomass
- Forest area
- Timberland area
- Large tree class stand area
- Standing dead

Consistent size distribution reflects healthy stand

Major stand diameter categories			
	Hard-	Soft-	
Category	wood	wood	Stocking
			>50% in medium
Large	>11"	>9"	or large trees
			>50% in medium
			or large trees &
			more medium
Medium	5-11"	5-9"	than large trees
			At least 50% small
Small	<5"	<5"	diameter trees

Savannah fuelshed stand size

Chesapeake fuelshed stand size

16 Managed by UT-Battelle for the U.S. Department of Energy

Next steps

Evaluate projections for future pellet exports using Bob Abt's economic model

- Continue to develop and test tools for assessment of progress toward bioenergy sustainability
 - ➢Focus on particularly challenging indicators
 - ✓ Biodiversity
 - ✓ Reference case for carbon accounting
 - ✓ Water quality

Case studies of evaluating progress toward sustainability

Pellet production in SE US – survey of private landowners (building on National Woodland Owner Survey)

Cellulosic crops in midwestern US (project led by Antares Group Inc.) <u>http://energy.gov/eere/articles/energy-department-announces-9-million-</u>

Next step: Tool to Visualize Progress toward Sustainability

• Objective: Develop and test visualization tool (starting with a demonstration)

- Displays information about progress being made toward bioenergy sustainability
 - In a particular context as defined by the user.
 - As characterized by a suite of environmental, social and economic indicators
- Enhances understanding of tradeoffs and communicates relative importance of different components
- Audience: Diversity of stakeholders: individuals, groups, businesses, organizations
- Identify relevant properties of bioenergy sustainability indicators for aggregation
 - How can information from multiple distributions for indicators be aggregated in a way that reduces complexity and maintains the most information?
 - Use statistical and probabilistic approaches and properties of specific aggregation functions
 - Quantifying uncertainty using the geometric mean as the aggregation function has yielded positive results
- Develop "dashboard" = collection of linked components that can affect each other
 - Aggregate correctly
 - Provide clear interpretation of results
 - Engage user in exploring alternatives
- Process Design a flexible platform via several case studies

Opportunities Bioenergy Offers to more Sustainable Systems

Better management of renewable resources

- -Reducing wastes and inefficiencies
- -Existing infrastructure, know-how and technologies
- -Retaining land in agriculture or forest

Improve environmental conditions

- -Soils & water
- -Biodiversity
- -Carbon and GHG

Enhance food & energy security

- -Conserving fossil energy resources
- -Reducing risk of catastrophes

Increase rates and stability of employment

Barriers to more Sustainable Systems

Public perception

- -Unmet expectations
- –Uncertainty about future demand & prices

Economics

- -Unstable policy
- –Up-front costs & risks of new energy systems
- –Uneven playing field
 - Subsidies
 - Lack of Infrastructure for new systems
 - Easy access to inexpensive fossil fuels

Sustainability concerns

- -Food security
- -Biodiversity
- -Ambitious requirements

Dale and Kline (in review)

Paths Bioenergy Provides to more Sustainable Systems

- Use wastes and residues
- Be context specific
 - Build on existing infrastructure and knowhow
 - Communicate costs and benefits
- Promote better management
 - Integrated agriculture
 - Landscape design

Dale and Kline (in review)

Thank you!

http://www.ornl.gov/sci/ees/cbes/

This research is supported by the U.S. Department of Energy (DOE) Bio-Energy Technologies Office and performed at Oak Ridge National Laboratory (ORNL). Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for DOE under contract DE-AC05-000R22725.

References

- Dale VH and Kline KL. In review. Opportunities, barriers, and paths forward for sustainable use of bioenergy. Ecology and Society.
- Dale VH, KL Kline, D Perla, A Lucier. 2013. Communicating about bioenergy sustainability. Environmental Management 51(2): 279-290. DOI: 10.1007/s00267-012-0014-4.
- Dale VH, RA Efroymson, KL Kline, MH Langholtz, PN Leiby, GA Oladosu, MR Davis, ME Downing, MR Hilliard. 2013. Indicators for assessing socioeconomic sustainability of bioenergy systems: A short list of practical measures. Ecological Indicators 26: 87-102. <u>http://dx.doi.org/10.1016/j.ecolind.2012.10.014</u>
- Dale VH, Kline KL, Marland G, Miner RA. 2015. Ecological objectives can be achieved with woodderived bioenergy. Frontiers in Ecology and the Environment 13(6):297-299.
- Dale VH, KL Kline, MA Buford, TA Volk, CT Smith, I Stupak. 2016. Incorporating bioenergy into sustainable landscape designs. Renewable & Sustainable Energy Reviews 56:1158-1171. <u>http://authors.elsevier.com/sd/article/S1364032115014215</u>
- Efroymson, RA, VH Dale, KL Kline, AC McBride, JM Bielicki, RL Smith, ES Parish, PE Schweizer, DM Shaw. 2013. Environmental indicators of biofuel sustainability: What about context? Environmental Management 51(2): 291-306. DOI 10.1007/s00267-012-9907-5
- McBride, A, VH Dale, L Baskaran, M Downing, L Eaton, RA Efroymson, C Garten, KL Kline, H Jager, P Mulholland, E Parish, P Schweizer, and J Storey. 2011. Indicators to support environmental sustainability of bioenergy systems. Ecological Indicators 11(5) 1277-1289.
- Parish, ES, M Hilliard, LM Baskaran, VH Dale, NA Griffiths, PJ Mulholland, A Sorokine, NA Thomas, ME Downing, R Middleton. 2012. Multimetric spatial optimization of switchgrass plantings across a watershed. Biofuels, Bioprod. Bioref. 6(1):58-72. DOI: 10.1002/bbb.342
- Parish ES, KL Kline, VH Dale, RA Efroymson, AC McBride, TL Johnson, MR Hilliard, JM Bielicki. 2013. A multi-scale comparison of environmental effects from gasoline and ethanol production. Environmental Management 51(2): 307-338. DOI: 10.1007/s00267-012-9983-6
- Parish ES, VH Dale, BC English, SW Jackson, DD Tyler. 2016. Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee. Ecosphere 7(2):e01206. 10.1002/ecs2.1206.

